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Abstract. In this paper, we propose a novel effective framework to ex-
pand an existing image dataset automatically leveraging existing cat-
egories and crowdsourcing. Especially, in this paper, we focus on ex-
pansion on food image data set. The number of food categories is un-
countable, since foods are different from a place to a place. If we have a
Japanese food dataset, it does not help build a French food recognition
system directly. That is why food data sets for different food cultures
have been built independently category so far. Then, in this paper, we
propose to leverage existing knowledge on food of other cultures by a
generic “foodness” classifier and domain adaptation. This can enable us
not only to built other-cultured food datasets based on an original food
image dataset automatically, but also to save as much crowd-sourcing
costs as possible. In the experiments, we show the effectiveness of the
proposed method over the baselines.

Keywords: dataset expansion, food image, foodness, domain adaptation, crowd-
sourcing, adaptive SVM

1 Introduction

Recently, needs for food image recognition become larger, since food habit record-
ing services for smartphones are spreading widely for everyday health care. For
food habit recording, conventional ways such as inputing food names by texts
or selecting food items from menus are very tedious, which sometimes prevent
users from using such systems regularly. Then, several works on food recognition
have been proposed so far [1–5] to make it easy to use food habit recording. In
these works, the number of food categories is 100 at most, which is not enough
for practical use. In fact, all of the foods we eat in our everyday life cannot be
covered with only one hundred food categories, and the number of foods which
can be recognized should be increased much more.

On the other hand, in these years, large-scale image classification is paid
attention, and many methods for that have been proposed recently [6–9]. Due
to these works, the number of categories to be recognized have been increased
up to 1000. For example, in ImageNet Large Scale Visual Recognition Challenge
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(ILSVRC), the number of categories to be classified is 1000. The data set for
ImageNet Challenge is a subset of ImageNet [10], which is known as the largest
visual database where the number of categories are more than 20,000. Large-
scale image data sets such as ImageNet cannot be created by researchers by
themselves. Most of them use crowd-sourcing Web services such as Amazon
Mechanical Turk to build them semi-automatically.

In this paper, we propose a novel framework to expand an existing image
dataset automatically leveraging existing categories. Especially, in this paper,
we focus on expansion on food image data set.

While ImageNet covers comprehensive concepts, our target is restricted to
foods. In ImageNet, annotation of each concept is gathered independently. On
the other hand, since foods look more similar to each other, visual knowledge on
foods of a certain country is expected to help collect annotations of food photos of
the other countries. Then, in this paper, we propose a novel effective framework
which utilizes knowledge on food of other countries by domain adaptation.

Basically, we gather food image candidates on novel food categories from the
Web, and select good photos and add bounding boxes by using crowd-sourcing.
In general, raw Web images include many noise images which are irrelevant to
a given keyword. Especially, in this work, non-food images can be regarded as
noise images. To exclude them from the gather images, we filter and re-rank Web
images related to a given food category by using visual knowledge extracted from
the existing food dataset.

Firstly, we built a generic “foodness” classifier from a Japanese food data
set, UEC-Food100 [4]. We cluster all the food categories in the exist food image
set into several food groups the member of which are similar to each other in
terms of image feature vectors, and we train SVMs regarding each food group
independently. Then, we evaluate unknown images using the trained SVMs on
the food groups, and regards the maximum value of the output values of all the
SVM as the “foodness” value of the given image. We can decide if a given image
of a unknown category is a food photo or not based on the “foodness” value.
In addition, because we select the maximum value from all the output valued of
food groups, we estimate the most related food group to a given photo.

After “foodness” filtering, we obtain a food photo set. However, it might
include food photos irrelevant to the given food keyword. Secondly, we select
and re-rank more relevant images from the images judged as food photos by
using transfer learning with visually similar categories in the source food photo
data set. As a method of transfer learning, we use Adaptive SVM (A-SVM) [11]
which can learn a discriminative hyper-plane in the target domain taking into
account source-domain training data. In this work, the labeled data of the source
categories which are visually similar to the target food photos are used as source-
domain training data. As an initial target-domain training data, we use upper-
ranked photos by a unsupervised image ranking method, VisualRank (VR) [12].
Then, we select food candidate images to be submitted for the crowd-sourcing
by applying a trained A-SVM. By the experiments, the precision of the food
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candidate photos by A-SVM has been proved to outperformed the results by
only VisualRank and by normal standard SVM.

The contributions of this paper are as follows:

(1) Propose a novel framework to extend an existing image dataset with a
generic “foodness” classifier and domain transfer learning.

(2) Three-step crowd-sourcing: selecting representative sample images, ex-
cluding noise photos, and drawing bounding boxes.

(3) Evaluate and compare accuracy of built food datasets and costs regarding
the proposed method and two baselines.

(4) Apply the proposed framework in a large scale, and build a new 100-
category food dataset based on the existing 100-category food dataset
automatically.

2 Related Works

In the above-mentioned work, the target foods are limited to the foods which are
common in a certain country. For example, US food [1, 3, 13], Chinese food [2]
and Japanese food [4, 14]. From this observation, it is assumed that these food
datasets were built to implementing food recognition systems the target of which
are only the foods in the specific countries.

In addition, in the above-mentioned works, the number of target food cate-
gories is limited to 100 at most. From a practical point of view, 100 food cate-
gories is not enough for recognizing everyday foods for generic people. In fact,
the number of foods we eat in our everyday life is much more than one hundred,
and the number of foods which can be recognized should be increased much
more.

Then, in this work, to make it easy to add the number of food categories
and to implement food image recognition systems for other country foods or all
the country foods, we propose a method to use an existing food dataset to build
additional or another food dataset automatically by applying transfer learning.

On the Web, there are various kinds and huge amounts of images. It is very
easy to collect images associated with a given keyword using Web API such
as Bing Image Search API, Flickr API and Twitter API. However, raw Web
images contain many noise images which are irrelevant to the given keyword.
Therefore, many works on re-rank Web images regarding the given keyword
have been proposed since ten years ago [15, 16]. Most of these works employed
object recognition methods to select relevant images to given keywords from
“raw” images collected from the Web using Web image search engines.

After spreading Amazon Mechanical Turk (AMT) which is the world-largest
crowd-sourcing Web platform, it is commonly used for a task to select relevant
images. AMT enables us to build a very huge-scale image dataset such as Ima-
geNet [10], to build a middle- or large-scale dataset with bounding boxes [17],
and to add attributes to a large-scale dataset [18].
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In some works, AMT was incorporated into object recognition procedures,
which was called “humans in the loop”. Vijayanarasimhan et al. [17] proposed
to combine active learning of object detectors and AMT crowd-sourcing tasks to
draw bounding boxes as a loop procedure to raise accuracy of object detection
gradually. On the other hand, Branson et al. [19] proposed complementary use
of AMT with object classifiers by giving AMT workers simple easy questions to
tackle difficult fine-grained object classification.

In addition, thanks to crowd-sourcing, many kinds of image datasets have
released such as “bird” [20], “aircraft” [21], and “flower” [22]. They are intended
to be built for fine-grained visual categorization research.

In this work, we use AMT as a crowd-sourcing service to select relevant
images and add bounding boxes to selected food images. The objective is similar
to [17]. However, while Vijayanarasimhan et al. [17] collected relevant images and
their bounding boxes on each category independently, we collect images using
knowledge of the known categories in the existing database with a “foodness”
classifier and transfer learning.

In addition, as a pre-step of image selection, we prepare a task to ask the
best representative photos regarding the given category. Some small number of
representative photos are used to be shown workers as example photos to raise
the accuracy of the image selection step.

3 Proposed Method

In this paper, we propose a novel framework to expand an existing image dataset
automatically. The proposed framework consists of two stages: (1) the image
selection stage, and (2) the crowd-sourcing stage.

In the image selection stage, we collect images from the Web with the given
category names, and filter out noise images using a “foodness” classifier and
adaptive SVM [11], both of which we train using knowledge of the existing food
image database.

Then, in the crowd-sourcing stage, we crowdsource three kinds of tasks. First
one is selecting representative images for the given new food category, the sec-
ond one is discriminating relevant images from noise ones, and the third one is
drawing bounding boxes on each of the selected images.

The processing flow of the proposed framework is shown in Fig.1. Each of
the processing steps is explained as follows:

(1) Collect target food images associated with the given new food category
from the Web.

(2) Evaluate “foodness” on each of the collected images, and select only high
“foodness” images.

(3) Rank the selected food images with VisualRank, and train adaptive SVMs(A-
SVM) [11] with upper ranked images as pseudo positive samples.

(4) Evaluate collected images again by A-SVM.
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Fig. 1. Processing flow of the proposed framework.

(5) Crowdsource a task to select representative samples from the top 30 im-
ages in terms of A-SVM scores

(6) Crowdsource a task to discriminate relevant images from noise images for
the images ranked higher by A-SVM

(7) Crowdsource a task to draw bounding boxes on the selected images.

(8) Add the annotated food images to a food image dataset.

3.1 Foodness Classifier

We construct a “Foodness” Classifier (FC) for discriminating and evaluating
food images. FC evaluates if the given image is a food photo or not. We use FC
to remove noise images from the images gathered from the Web.

We construct a FC from the existing multi-class food image dataset. Re-
garding feature extraction and coding, we adopt the same way as our mobile
food recognition system [14]. Firstly, we train linear SVMs [23] in the one-vs-
rest strategy for each category of the existing multi-class food image dataset. As
image features, we adopt HOG patches [24] and color patches. Regarding foods,
rotation and scale invariance is not so important. We regard fast extraction as
more important, since we originally use these features for mobile food recog-
nition. Both descriptors are coded by Fisher Vector (FV) [9, 25], and they are
integrated in the late fusion manner. We perform multi-class image classification
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in the cross-validation using the trained liner SVMs, and we build a confusion
matrix according to the classification results.

Secondly, we make some category groups based on confusion matrix of multi-
class classification results. This is inspired by Bergamo et al.’s work [26]. They
grouped a large number of categories into superordinate groups the member
categories of which are confusing to each other recursively. In the same way, we
perform confusion-matrix-based clustering for all the food categories. We intend
to obtain superordinate categories such as meat, sandwiches, noodle and salad
automatically.

To build a “foodness” classifier (FC), we train a linear SVM of each of the
superordinate categories. The objective of FC is judging if a food photo candidate
which never corresponds to any food category in the existing dataset is a food
photo or not. Therefore, abstracted superordinate categories are desirable to be
trained, rather than training of all the food categories directly. The output value
of FC is the maximum value of SVM output of all the superordinate food groups.

When training SVMs, we used all the images of the categories under the
superordinate category as positive samples. For negative samples, we built a
negative food image set in advance by gathering images using the Web image
search engines with query keywords which are expected to related to noise images
such as “street stall”, “kitchen”, “dinner party” and “restaurant” and excluding
food photos by hand. All the images are represented by Fisher Vector of HOG
patches and color patches. SVMs are trained in the late fusion manner with
uniform weights. In the experiments, we will show the effectiveness of FC for
evaluating “foodness” of food images of novel unknown categories based on visual
knowledge of known food categories in the existing database.

3.2 Re-ranking with Domain Transfer

After “foodness” filtering, most of the remaining images are food images. How-
ever, they might includes other kinds of foods than the given food category.
Since the objective of the proposed framework is collecting food images of novel
unknown categories. To filtering out other food images than the target food
category, we adopt discriminative approach with pseudo-positive samples in the
similar way as Schroff et al. [16], since we have no labeled samples on the given
novel category initially.

To get pseudo-positive samples, we rank the remaining images by the Visu-
alRank [12] method. In addition, we use adaptive SVM [11] to leverage visual
knowledge of the existing food image database. Because VisualRank is a unsu-
pervised method to rank images which have many visually similar images in the
upper ranking, it is useful to select relevant images from a noisy image dataset.
However, it has drawback to narrow diversity of images. To compensate it, we
use a domain adaptation method to leverage the existing food image database
for classifying novel unknown food images.

VisualRank To select pseudo-positive images, we apply VisualRank [12] to the
top N images in term of “foodness” scores. We set N as 300 in the experiments.
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For computing VisualRank scores, we obtained similarity matrix S as being dot
product of Fisher Vectors (concatenated vectors of HOG FV and Color FV)
instead of the number of matched local features. It has been proved that dot-
product of FV can be regarded as a good similarity measure, and dot-product of
L2-normalized vectors is equivalent to the cosine similarity [9, 27]. In addition,
according to the following equation, we normalize each element s of similarity
matrix S so that snormalized varies within only [0, 1] range, because the value of
elements of FV can be negative.

snormalized =
s− smin

smax − smin
(1)

where smax and smin are maximum and minimum values among all the elements
of similarity matrix S. Next, we column-normalized S for computation of Visual-
Rank. Regarding a bias vector v, we assign only the top m images with uniform
weights in the same way as [12]. We set m as 100 in the experiments. Note that,
we use the same Gaussian Mixture Model(GMM)s for FV coding estimated in
the the previous step. This mean that the descriptors of unknown category are
not modeled independently.

We calculate VisualRank score r in the following equation:

r = α ∗ Sr + (1− α) ∗ v, (2)

where α is a damping factor where we set it to 0.85 according to [12].

Selection of source domain samples and target domain samples To
train and apply adaptive SVM [11], we need to prepare source-domain labeled
samples as well as target-domain labeled samples. Because for both domains we
need to prepare positive and negative samples, totally we prepare four kinds of
samples for training of A-SVM.

As target-domain positive samples, we use the top M images in terms of the
VisualRank scores, while as target-domain negative samples, we use the images
with lower “foodness” scores in the initial image set gathered from the Web. In
the experiments, we selected at most 300 images the “foodness” score of which
were less than -0.6. Because the objective of this A-SVM-based re-ranking step is
excluding noise images from the initial image set, not classifying generic images
into one of food categories, we use negative samples which are peculiar to the
given food category.

As source-domain positive samples, we use all the samples in the most related
food group to the given new food category. As mentioned in the previous sub-
section, a “foodness” classifier can estimate the most related food group as well
as a “foodness” score. We select the most frequent food group among the top
100 “foodness” images in the initial image set as the most related food group
to the given new food category. As source-domain negative sample, we use the
same negative food image set used in the previous step of a “foodness” classifier.

In the next step, we select positive samples to exclude noise images, and
select effective negative samples for training. Regarding source-domain samples,



8 Yoshiyuki Kawano and Keiji Yanai

in general, the distribution of source-domain samples are wider than one of
target-domain samples. Regarding target-domain samples, they are unreliable
and tend to include outliers, since target-domain samples are selected automat-
ically by a “foodness” classifier and VisualRank. Then we select the samples
which are closed to target-domain samples as source-domain samples, and the
samples which are closed to other target-domain samples as target-domain sam-
ples according to the following heuristics:

– Select the target-domain positive samples each of which has more than 3
positive samples among the nearest 5 samples over the space of all the target-
domain (positive and negative) samples.

– Select the target-domain negative samples each of which has 5 negative sam-
ples among the nearest 5 samples over the target-domain space.

– Select the source-domain positive samples which are included in the union
set of 7 closest source-domain all (positive and negative) samples to each of
the selected target-domain positive samples.

– Select the source-domain negative samples which are included in the union
set of 7 closest source-domain all samples to each of the selected target-
domain positive samples.

This process is called “Sample Selection (SS)” in the section on experiments.
After source/target-domain positive/negative samples are selected finally, we

train the adaptive SVM, and apply the trained model to re-rank the images in the
image set after filtering by the “foodness” classifier. We use only higher-ranked
images for crowd-sourcing tasks.

3.3 Crowd-sourcing

The final objective is obtaining a novel food image dataset with bounding boxes.
In the previous steps, we applied “foodness” filtering and adaptive SVM re-
ranking. However, the obtained food imageset is not perfect, and has no bounding
box information. As the final steps, we crowdsource the following three kinds of
tasks: (1) selecting representative sample images, (2) removing irrelevant images,
and (3) drawing bounding boxes. As a crowd-sourcing service, we use Amazon
Mechanical Turk (AMT).

Representative Image Selection Task We assumes that AMT workers does
not have knowledge about various kinds of foods. Therefore, it cannot be ex-
pected to obtain highly accurate results without any preparations. Then, we
prepare a task to select representative sample images as a pre-process step.

In this task, we ask AMT workers to select less than 10 representative images
to the given food category from the top 30 image of A-SVM output scores,
after studying about the given food category by visiting Wikipedia, Google Web
search and Google Web image search with the name of the given food category
as a query word. We design the task page so that AMT workers cannot submit
the results without clicking the Web links to Wikipedia and Google sites. After
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collecting results from 5 workers, we select the top 5 or 7 images as representative
samples based on the number of votes by the workers. In the experiments, we
set one HIT (Human Intelligence Task, which is a task unit in AMT.) of this
task as 0.06$.

Noise Removal Task In this task, we ask AMT workers to annotate if the
shown images are relevant to the given food category or not. In the task page,
we show the representation images selected in the previous task. We believe this
will be helpful for works who have never seen the target food. In one HIT, we
use randomly-selected 25 images in the higher rank of the A-SVM scores. To
prevent irresponsible worker, if there are more than four unchecked images, the
result cannot be submitted. The results will be combined based on the majority
voting. In the experiments, we requested each HIT for 5 workers. We set 1 HIT
as 0.03$.

Drawing Bounding Box Task As the final task, we ask AMT workers to draw
bounding boxes on the selected food images until the previous step. One HIT
contains ten image annotation. In this step, worker can still mark irrelevant im-
ages as “noise” in the same way as the noise removal task, if they discover. After
obtaining the results, we combine them by averaging the position of bounding
boxes excluding images with no bounding boxes and too small bounding boxes.
We add the finally selected images with bounding box to a new food image
database as a ground-truth data. In the experiments, we requested each HIT for
4 workers. We set one HIT as 0.05$.

4 Experiments

In this section, we perform the following three experiments to evaluate the ef-
fectiveness of the proposed method.

– Performance comparison on food image filtering by a “foodness” classifier
and adaptive SVM to leverage knowledge of the existing food dataset

– Evaluation of the final results after crowd-sourcing and analysis of crowd-
sourcing cost.

Before evaluation, we describe a dataset, feature representation and initial
food image collection from the Web. As an existing food dataset, we use “UEC-
Food100” dataset [4] which consists 14361 food photos. Its number of food cat-
egories is 100, most of which are Japanese food categories. When building a
“foodness” classifier (FC), we clustered 100 food categories into 13 food groups
based on confusion matrix as shown in Tab.1. Note that the type of food groups
in the table are named by hand for explanation.

As feature representation, we used 32-dim HOG local patches (8 orientations,
2x2) and 24-dim color local patches (mean and variance of RGB, 2x2) both of
which are densely sampled from an image at difference 2 scales. After applying
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Table 1. 13 food groups and their member foods.

type of food group food categories

noodles udon nooles, dipping noodles, ramen
yellow color omlet, potage, steamed egg hotchpotch

soup miso soup, pork miso soup, Japaneses tofu and vegetable chowder
fried takoyaki, Japaneses-style pancake, fried noodle

deep fried croquette, sirloin cutlet, fried chicken
salad green salad, macaroni salad, macaroni salad
bread sandwiches, raisin bread, roll bread
seafood sashimi, sashimi bowl, sushi
rice rice, pilaf, fried rice
fish grilled salmon, grilled pacific saury, dried fish

boiled seasoned beef with potatoes
and simmered ganmodoki

seasoned seasoned beef with potatoes
sauteed sauteed vegetables, go-ya chanpuru, kinpira-style sauteed burdock
sauce stew, curry, stir-fried shrimp in chili sauce

PCA, local descriptors are coded into Fisher Vector with GMM codebook (k=64)
and a level-1 spatial pyramid (SPM) [28]. The GMM was estimated from the
existing food dataset in advance.

Regarding initial food image collection from Web, we collected food images
via Flickr API, Twitter API and Bing Image Search API based on query words
associated with the given food category. We collected more than 600 images for
each category. As query words, we used the words of both local language and
English. We excluded duplicated URLs using a URL hash table after putting
together all the image URLs gathered from three different APIs.

4.1 Evaluation on Image Filtering Results

For evaluation, we collected 35 categories of food image sets including 5 country
foods with 7 categories for each country. All the 35 categories do not overlap
with the categories in “UEC-FOOD100”. We evaluated the precision of the top
300 food images (Precision@300) for each category. Note that we regarded badly-
conditioned food images as being irrelevant. For example, an image with very
small food region and an image in which only small portion of original food
region is visible are not relevant.

We compare Precision@300 after filtering by the following six methods: (1)
VisualRank with Fisher Vector, (2) “foodness” classifier (FC), (3) normal SVM
using only target-domain training samples without “Sample Selection (SS)” af-
ter FC filtering (4) normal SVM using only target-domain training samples
with SS after FC filtering (5) adaptive SVM using both source/target-domain
training samples without SS after FC filtering, and (6) adaptive SVM using
both source/target-domain training samples with SS after FC filtering. The last
method (FC + A-SVM(SS)) corresponds to the proposed methods. Note that
“Sample Selection (SS)” means the step to select of training samples for A-SVM
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Table 2. Precision@300 of the food images ranked by six methods. The bottom
method† is the proposed methods.

no Method American Japanese Chinese Thai Indonesian Average
(1) VisualRank(VR) 58.47 54.95 60.66 62.19 58.71 59.00
(2) “Foodness” (FC) 78.00 75.33 77.61 82.85 78.61 78.48
(3) FC + SVM 84.52 82.90 84.80 88.80 81.95 84.60
(4) FC + SVM(SS) 85.57 83.38 85.09 89.23 82.23 85.10
(5) FC + A-SVM 86.95 85.71 86.19 89.66 82.71 86.24
(6) FC + A-SVM(SS)† 89.61 87.76 87.76 91.38 84.09 88.12

Table 3. Precision@200 of “pseudo-positive samples” which is provided to SVM or
A-SVM as positive target samples.

no Method American Japanese Chinese Thai Indonesian Average
(A) only FC 79.21 77.00 80.21 83.78 83.00 80.64
(B) FC+VR 85.00 83.78 85.78 89.14 86.21 85.98

or SVM (see Sec. 3.2), and VisualRank is still used for positive sample selection
in (4)(5)(6)(7).

Tab.2 shows average Precision@300 of the results after filtering by each of
the seven methods over 5 country foods and all 35 kinds of foods. Overall, the
proposed methods outperformed other six baseline methods for all the regional
foods.

Compared between VR and other supervised methods, the precision value
by unsupervised VisualRank is not so good as the results by supervised discrim-
inative classifiers such as FC and FC+A-SVM. In fact, FC improved Precision
by about 20.0 points compared to VisualRank. This indicates that using exist-
ing categories helps improve filtering accuracy much, although they are different
from the newly collected categories.

To use supervised methods such as SVM and A-SVM, we selected pseudo-
positive samples from the top 300 images ranked by FC with Visual Rank(VR),
and we used the top 200 images ranked by VR as pseudo-positive samples in the
after steps. Tab. 3 shows the precision at the top 200 images before and after
applying VR. Compared with two results, Precision@200 was improved by 5.34
points, which shows the effectiveness of applying VR after FC.

In case of FC+SVM, we used only target-domain training samples where
positive samples are selected by VisualRank from the unlabeled samples, and
manually-constructed common negative samples are used as negative samples.
Although FC+SVM employs supervised SVM, the step itself is unsupervised
because positive samples are “pseudo-positive” samples collected automatically.
Even without supervision, FC+SVM improved by about 6 points compared to
FC in terms of Precision@300. After adding training sample selection (SS) for
SVM, the Precision was slightly improved.

FC+A-SVM and FC+A-SVM(SS) introduced a transfer learning method,
adaptive SVM, which takes into account source-domain training samples as well.
From their results, introducing domain transfer helps improve accuracy of image
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mango
pudding omlet potage

steamed egg
hotchpotch

loco moco curry stew
egg sunny-side

up

salt pepper
fried shrimp
with shell

fried shrimp fried chicken croquette

Fig. 2. The target-domain food images in the left column, and three source-domain
samples in the most related food groups.

filtering, and the proposed method (FC+A-SVM(SS)) has achieved the best
result, which proves the effectiveness of the proposed method.

Fig.2 shows the top 3 food categories in terms of Precision@300 among all
the 35 categories, “mango pudding”, “loco moco” and “fried shrimp with shell”
in the left column, and three source-domain samples in the corresponding food
groups. The images in each food group are used as source-domain positive sam-
ples when training adaptive SVM. The target-domain images looks similar to
source-domain images in terms of color, shape or ingredients. All the foods in
the first row in the figure are light-yellow, the foods in the second row have
brown-colored source, and the foods in the bottom row have fried ingredients.
From these results, the new category images can be classified with visually sim-
ilar images of the existing categories in the most related food group by using
transfer learning. This is a part of the contributions of this work.

4.2 Evaluation accuracy and costs of crowdsourcing

We evaluate the effectiveness of showing representative samples to workers, ac-
curacy of obtained image sets and crowdsourcing costs.

Workers’ Evaluation on Representative Samples We prepared a task to
select representative sample images as a pre-process step. Selected representation
images were shown in the page of noise removal task and drawing bounding box
task in order to teach workers what relevant food photos look like. To evaluate
its effectiveness, we asked workers in each HIT if sample images shown in the
HIT page are useful, so so or useless. As a result, 3495 and 5359 answers are
obtained in noise removal task and annotation bounding box task. Tab.4 shows
the ratio of each answer, which shows the effectiveness of showing representative
samples in both noise removal task and annotation bounding box task.
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Table 4. Evaluation by workers on representative samples images (%)

useful so so useless
noise removal task 89.59% 7.90% 2.52 %

drawing bounding box task 91.68% 7.02% 1.31 %

Table 5. Precision of food images on dataset by difference 3 methods.

precision gain
FC + BB task 91.10 -
FC + A-SVM + BB task 94.19 +3.09
FC + A-SVM + NR task + BB task 97.83 +3.64

Evaluation of accuracy and costs To evaluate accuracy and costs including
crowdsourcing, we constructed three kinds of datasets by the following different
combination of filtering steps: (1) FC + drawing bounding box task (BB task),
(2) FC + A-SVM(SS) + BB task, and (3) FC + A-SVM(SS) + noise removal
task (NR task) + BB task. In case of (1) and (2), workers have to mark irrelevant
images as “noise” in addition to drawing bounding boxes to relevant images in
the BB task, because the noise removal task is not included. The combination
(1) is the simplest, and in (2) adaptive SVM was added. The last combination
where noise removal task is prepared as an independent task is equivalent to
the proposed framework. Note that all the combination includes representative
sample selection task.

Tab.5 shows the precision of food images on the constructed dataset after
crowsourcing by each combination. The precision by “FC+BB task” was 91.1%,
while the precision by “FC+A-SVM(SS)+BB task” was 94.19%. Introducing A-
SVM(SS) improved 3.09%, while it improved about 10% regarding the precision
of filtered image sets before crowdsoucing. Although both combinations employs
human annotation via crowdsourcing, the difference in precision appeared after
crowdsourcing. This is estimated to come from the accuracy of dataset to supply
workers. From this observation, to get more accurate results from crowdsourcing,
more accurate data should be provided to crowdsourcing workers.

Compared between “FC+A-SVM(SS)+BB task” and “FC+A-SVM(SS)+NR
task+BB task”, separating noise removal task from drawing bounding box im-
proved the precision, although provided datasets are the same. This indicates
that crowdsourcing tasks (HITs) should be include only one kinds of jobs. Of
course, increase of the number of crowdsourcing steps means increase of econom-
ical costs. We compare costs among the three cases in the next.

Tab.6 shows the recovery ratio and cost for the three combinations. The
recovery ratio means the ratio of the number of the images which were finally
annotated with correct bounding boxes over the number of provided images to
workers for crowdsourced annotation. If the recovery ratio is low, many irrelevant
samples are provided to workers, which means economical costs increase. “Costs”
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Table 6. Recovery ratio(%) and costs($) to get annotated 100 images.

noise removal bounding box total
recovery ratio cost recovery ratio cost total

FC + BB task - - 64.2 3.11 3.11
FC + A-SVM + BB task - - 74.7 2.68 2.68
FC + A-SVM + NR task + BB task 80.9 0.74 86.7 2.31 3.16

shown in the table means the money ($) paid for AMT to get 100 annotated
images. To avoid wasting money, the recovery rate should be high, hopefully
close to 100%.

“FC+BB task” was apparently a bad strategy, because the total cost is high
and the accuracy of the obtained results shown in Tab.5 is worst. “FC+A-
SVM+BB” performed the best among the three strategies in terms of cost.
Adding the noise removal task, the cost increased, because the number of crowd-
sourcing steps also increased. However, the precision of the final obtained results
was the best as shown in Tab.5. That shows that there is a trade-off between
cost and accuracy. It depends on the policy when building a dataset. Of course,
Tab.6 shows just one case. If a unit price for HIT of each task is changed, the re-
sult of cost analysis will be changed. Regarding cost, more accurate data should
be provided to crowdsourcing workers to raise the recovery rate. To do that,
introducing “foodness” classifier and adaptive SVM is very effective.

5 Conclusions

In this paper, we proposed a novel framework to expand an existing image
dataset automatically employing generic classifiers and domain adaptation to
leverage visual knowledge in the existing dataset. Especially, in this paper, we
focused on expansion on food image data set. In the experiments, we showed
the effectiveness of the proposed method over baselines in terms of the proposed
image filtering methods and the proposed procedure for crowdsourcing.

For future work, we will make further analysis on the difference between a
hand-collected food image dataset and an automatically collected dataset by
the proposed framework. In addition, we plan to extend the framework to other
categories than foods such as clothes and animal.

We will release a new large-scale food photo dataset collected by the pro-
posed framework by the time of ECCV 2014. It will include more than 256
kinds of foods from various countries such as French, Italian, US, Chinese, Thai,
Vietnamese, Japanese and Indonesia.
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